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Short Abstract— We consider the integration of analytical The mappingsV/; and M, are given implicitly by solving
and experimental tools for the design of engineered biochem the differential equations representing the biochemieattion
ical networks. We derived an experimental design tool that nauyorks. The complex relationship between the inputs and
discriminates candidate models and exploits the dispariés to test th tout ltina f the tvpical i itv of th
their viability. We further developed a new experimental testbed _e ou p_u S resu. Ing from the typical nonfineari y_ 0 es
that is conducive to model invalidation and efficient, paralel differential equations makes problems P1 and P2 intragtabl
experimentation. The tools will be integrated to reliably nodel We derived a sufficient method for solving the problems using
and design variousin vitro DNA reaction networks. a scalable convex relaxation and showed how the disparity ce
l. INTRODUCTION tificate generates experimental data that necessariljidavas

The desi ¢ . d biological svst . i tat least one of the two candidate models.
€ design of engineered biological Systems 1S complica edThe experimental tool is a testbed for testing models of

by. a general Iapk of mode]s Fh"’.‘t predict dynamic t)Qh"’“’icffiochemical reaction networks an vitro DNA and RNA-

With the excep'tlon of gertam Ilmlted classes (e.g., monpto based dynamical systems. For example, we have used experi-
§ystem§ [1])' biochemical reaction network models ofteh ffal’nental data from the testbed to compare a pair of competing
in prediction due to unknown parameters or wrong abStraCt'Biochemical reaction models of a DNAzyme-based, RNA-
level. Therefore, general, rellgble, and.pred|ct.|ve |.|aMnmacal fuelled nanomotor [3]. The favorable comparison of simolat
models.are needed to effectively engineer b|plog|ca| H'St jata from one model-and not of the other—to experimental
and their component parts (€.g., regulators, bi-stableches, data shows that waste management is crucial to achieving the

and oscillators). desired system behavior. Recently, we have begun working

ec\é\:?ora¥iedz\;zlgrliarider:?a(\)llzggirgﬁxs) %ﬁlﬁegtgleng;?r;r?:n&émh systems built from synthetic transcriptional switstd]
’ L ? : h I high-th hput, llel i t
method that discriminates candidate models and exploits and have also added high-throughput, parallel experimen

di ities to identify viabl ¢ . d aksit a{é\pabilities to the testbed.
Isparities to 1den '.fy Viable parameter regimes an 10N The experimental testbed could be used to directly search
levels. The experimental execution tool is an expenment'%l

. . . . . for controlled variables that yield specific outputs. Such a
testbed forin vitro biochemical systems that are mainly bu'lgearch, however, may be overly time-consuming and may yield

from DNA and RNA. These tools form the foundation of Jittle predictive power. Instead, we consider using diggarer-

growmg.set of tools we are de_zveloplng.for reasoning abofi'ﬁcates to reduce a set of candidate models in an expohentia
and testing models of biochemical reaction systems.

fashion.
Il. METHODS I11. FUTURE WORK

The experimental design tool takes a pair of candidate\ye will fully integrate the above experimental and analttic
models and computes, if possible, experimental conditioals 105 to conduct a parallel search for a mathematical model
will necessarily 'indicate which candidgte model is vial#¢ [ hat pest predicts the experimental output. The basic @gpro
First, an experiment's controlled variables (e.g., mol@cu comprises the following steps: 1) formulate candidate rroode
concentrations) and uncontr_olled variaples (e.g., rencttes) by partitioning the parameter space, and 2) discriminateram
are modeled as the control inputand disturbance, respec-  the candidates to refine the viable set of parameters. Theabo
tively. Then, given a pair of candidate input-output modelgyg steps are repeated until disparate models can no lorger b

y1 = Mi(u,w) and yo = Mp(u, w), with the same input ound. Numerical and experimental implementations of éhes
and output spaces, we solve the following two problemsiens are currently being developed.

P1) Model Discrimination Problem- find an input, called
the disparity certificate that yields different outputs for all
possible disturbances; PRjodel Invalidation Problem- given  [] 'é ?- Sonta(?,s“'\/'t?]n?toré? Ia”d jrear-monotone Ztggghem'mﬂfksy"

. . . ystems an yninetic BIologaol. 1, pp. —o/, .
the mpgts and ogtputs for a series of eX?CUted eXpe_”mer&?'D. Georgiev and E. Klavins, “Model discrimination of golomial sys-
find which candidate model maps the inputs to different tems via stochastic inputssubmitted to Proc. IEEE Conf. Decision &

outputs for all possible disturbances. Control, 2008. _ _
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